The place of automatic evaluation metrics in external quality models for machine translation

Andrei Popescu-Belis ISSCO / TIM / ETI University of Geneva

Workshop on Automatic Procedures in MT Evaluation *MT Summit XI, Copenhagen, 11 September 2007*

What is translation evaluation?

o Given

- a sentence S_n in a source language
- a sentence T_n in a target language

o Determine

a score s(S_n, T_n) such as
s = 1 iff T_n is a <u>perfect</u> translation of S_n
s = 0 iff T_n is <u>clearly not</u> a translation of S_n
s(S_n, T_n) > s(S_n, T_k) iff T_n is a <u>better</u> translation of S_n than T_k

Issues and answers

• What does "better translation" mean?

• go and ask people (= language users)

- Could **s** be computed automatically, directly from S_n and T_n ?
 - but this is also the goal of MT!
 - so, could s be approximated? with what supplementary knowledge?
- A consistently high s is not the only desirable property of an MT system

• → FEMTI

Plan

• A principled view of MT evaluation: FEMTI

- quality models: characteristics, attributes, metrics
- Two types of justifications for automatic MT evaluation metrics
 - structural reasons ("glass-box")
 - empirical reasons ("black-box")
- Empirical distance-based metrics
 - arguments for or against them
- Task-based evaluation
 - proposal for automatic task-based evaluation

Principled view of MT evaluation: FEMTI

• FEMTI: Framework for the evaluation of MT, started within the ISLE project

http://www.issco.unige.ch/femti

Two classifications / surveys

- characteristics of the context of use
- quality characteristics and metrics

Helps to define evaluation plans

 support interfaces: specify context of use, then generate contextualized quality model

Important ISO-inspired notions

o ISO/IEC 9126 and 14598, SQUARE framework

Quality

- "the totality of features and characteristics of a product or service that bear on its ability to satisfy stated or implied needs" (ISO/IEC 9126)
- decomposed into quality characteristics, then into measurable attributes, each with internal/external metrics
- six categories of quality characteristics: functionality, reliability, usability, efficiency, maintainability, portability

o Metric

 "a measurement is the use of a metric to assign a value (i.e., a measure, be it a number or a category) from a scale to an attribute of an entity" (ISO/IEC 14598)

FEMTI refinement of ISO quality characteristics for MT (Hovy, King & Popescu-Belis, 2002)

2.1 Functionality

- 2.1.1 Accuracy
 - 2.1.1.1 Terminology
 - 2.1.1.2 Fidelity / precision
 - 2.1.1.3 Well-formedness
 - 2.1.1.3.1 Morphology
 - 2.1.1.3.2 Punctuation errors
 - 2.1.1.3.3 Lexis / Lexical choice
 - 2.1.1.3.4 Grammar / Syntax
 - 2.1.1.4 Consistency
- 2.1.2 Suitability
 - 2.1.2.1 Target-language suitability
 - 2.1.2.1.1 Readability
 - 2.1.2.1.2 Comprehensibility
 - 2.1.2.1.3 Coherence
 - 2.1.2.1.4 Cohesion
 - 2.1.2.2 Cross-language / Contrastive
 - 2.1.2.2.1 Style
 - 2.1.2.2.2 Coverage of corpusspecific phenomena
- 2.1.2.3 Translation process models 2.1.2.3.1 Methodology 2.1.2.3.1.1 Rule-based models 2.1.2.3.1.2 Statistically-based models 2.1.2.3.1.3 Example-based models 2.1.2.3.1.4 TM incorporated 2.1.2.3.2 MT Models 2.1.2.3.2.1 Direct MT 2.1.2.3.2.2 Transfer-based MT 2.1.2.3.2.3 Interlingua-based MT 2.1.2.4 Linguistic resources and utilities 2.1.2.4.1 Languages 2.1.2.4.2 Dictionaries 2.1.2.4.3 Word lists or glossaries 2.1.2.4.4 Corpora 2.1.2.4.5 Grammars 2.1.2.5 Characteristics of process flow
 - 2.1.2.5.1 Translation preparation activities
 - 2.1.2.5.2 Post-translation activities
 - 2.1.2.5.3 Interactive translation activities
 - 2.1.2.5.4 Dictionary updating
 - 2.1.3 Interoperability
 - 2.1.4 Functionality compliance 2.1.5 Security

7

FEMTI refinement of ISO quality characteristics for MT (Hovy, King & Popescu-Belis, 2002)

2.2 Reliability

- 2.2.1 Maturity
- 2.2.2 Fault tolerance
- 2.2.3 Crashing frequency
- 2.2.4 Recoverability
- 2.2.5 Reliability compliance

2.3 Usability

- 2.3.1 Understandability
- 2.3.2 Learnability
- 2.3.3 Operability
 - 2.3.3.1 Process management
- 2.3.4 Documentation
- 2.3.5 Attractiveness
- 2.3.6 Usability compliance

2.4 Efficiency

- 2.4.1 Time behaviour
 - 2.4.1.1 Overall Production Time
 - 2.4.1.2 Pre-processing time
 - 2.4.1.3 Input to Output Tr. Speed
 - 2.4.1.4 Post-processing time
 - 2.4.1.4.1 Post-editing time
 - 2.4.1.4.2 Code set conversion
 - 2.4.1.4.3 Update time

- 2.4.2 Resource utilisation 2.4.2.1 Memory usage 2.4.2.2 Lexicon size 2.4.2.3 Intermediate file clean-up 2.4.2.4 Program size **2.5 Maintainability**
 - 2.5.1 Analysability
 - 2.5.2 Changeability
 - 2.5.2.1 Ease of upgrading multilingual aspects
 - 2.5.2.2 Improvability
 - 2.5.2.3 Ease of dictionary update
 - 2.5.2.4 Ease of modifying grammar rules
 - 2.5.2.5 Ease of importing data
 - 2.5.3 Stability
 - 2.5.4 Testability
 - 2.5.5 Maintainability compliance

2.6 Portability

- 2.6.1 Adaptability
- 2.6.2 Installability
- 2.6.3 Portability compliance
- 2.6.4 Replaceability
- 2.6.5 Co-existence
- 2.7 Cost (Introduction, Maintenance, Other) 8

Examples of metrics from FEMTI

- For <2.1.1.2 Fidelity>
 - assessment of the correctness of the information transferred by human judges
- For <2.4.1.3 Input to Output Translation Speed>
 - number of translated words per unit of time
- For <2.1.3.2 Punctuation errors>
 - percentage of correct punctuation marks
- For <2.5.2.3 Ease of dictionary update>
 - time OR effort necessary to update dictionary
- Some metrics require human judges that cannot be replaced with software (#1 above)
- Some metrics can be applied both by human judges or software (#2), but software is more precise & cheaper
- Some require human judges or complex software (#3)
- Some metrics require human users of the system (#4)

This workshop: "Automatic procedures in MT evaluation"

- Underlying assumption: look only at automatic metrics for the quality of MT output such as BLEU, WER, etc.
- → FEMTI Part II, under
 - <2.1 Functionality>
 - current metrics require human judges
 - could they all be automated? No obvious solutions!

Place of automatic metrics in FEMTI

- Do automatic metrics which were independently proposed belong in FEMTI? Where?
- If a function $\mathbf{s}(S, T)$: SL x TL → [0; 1] is to be called a quality metric, one should indicate what quality it measures
 - it must be possible to integrate this (external) quality into the ISO/FEMTI classification, most likely under <Functionality>, if not present yet

recognized metric applied by humans
 → hence place s in FEMTI under the same quality attribute

• the definition of the score s indicates that

it measures the same quality attribute as a

automatic MT evaluation metrics (1/2)

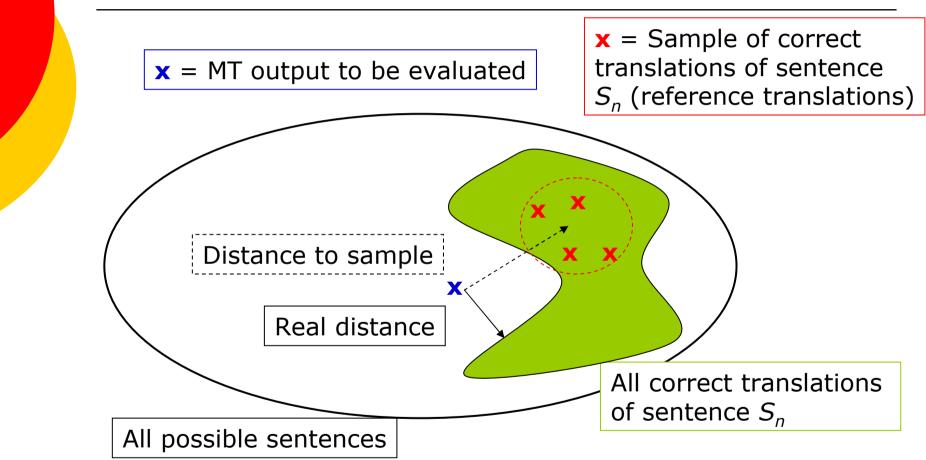
• An infrequent justification...

Two types of justifications for

Structural = "glass-box"

Two types of justifications for automatic MT evaluation metrics (2/2)

- Empirical (and frequent) justification = "black-box"
 - the values of score s on a given test set are statistically correlated with a recognized metric applied by human judges
 → assume that the two metrics measure the same quality


• Reverse engineering: how to construct such a score **s**?

- start with a set of MT sentences that are already scored by humans according to a metric s_h, i.e. start with a large set of triples (S_n, T_n, s_h(n))
- train a statistical model to approximate s_h and then estimate its error using cross-validation \rightarrow new automatic metric!
- But this is the same problem as statistical MT! $(s_h = 1)$
 - too difficult... → need to use supplementary information about correct translation(s) of the evaluation data set

Trainable distance-based metrics

- Distance-based NLP evaluation
 - the evaluation data set (test set) contains desired output associated to the input data
 - evaluation metrics are defined as distances between a system's output and the desired output, averaged over all items of input data
- Situation for MT
 - no unique desired output for an input sentence
 - frequent proposal: compute a distance between a system's output and a sample of correct outputs (often up to 4)
 - replace score $\mathbf{s}(S_n, T_n)$ with $\mathbf{d}(\{T_{ref(1)}, ..., T_{ref(4)}\}, T_n)$

Training automatic metrics

- How to construct a distance-based automatic metric **d**?
 - start with a set of machine-translated sentences (T_n) that are already scored by humans according to a metric s_h
 - each source sentence is accompanied by reference translation(s)
 - i.e. start with a large set of t-uples $({T_{ref(1)}, ..., T_{ref(k)}}, T_n, \mathbf{s}_h(n))$
- Find a distance **d** that approximates **s**_h
 - that is, $\mathbf{d}(\{T_{ref(1)}, ..., T_{ref(k)}\}, T_n) \approx \mathbf{s}_{\mathbf{h}}(n)$
- Essential point: role of (machine) learning
 - either the statistical model d was explicitly trained to approximate s_h
 - or several distances d_i were tried & the one closest to s_h was selected
 - in both cases, error of the model was estimated using cross-validation

Advantages and drawbacks of trainable (empirical) distance-based metrics

- Advantages
 - low application cost
 - high speed
 - reproducible (*vs*. human judges who may vary)
- o Drawbacks
 - correlation with reference (human) metric holds mainly for data that is similar to the training (or validation data)
 → unknown behavior for different (unseen) types of data
 - unclear/variable correlation with ISO-style qualities
 - need training data (which may have imperfect inter-judge agreement)

An alternative: task-based evaluation

- Measure utility of MT output for a given task
 - e.g. performance of human subjects on a task using human vs. machine-translated text
 - closer to ISO's quality in use
 - increasingly popular as limits of BLEU become visible
- + OK if system intended for specific application
- Expensive, time-consuming
- o Idea
 - <u>automatic task-based evaluation</u>
 - use MT output for another NLP module for which good automatic metrics are available
 - o e.g. reference resolution, document retrieval

Conclusions: two views of the future

o Utilitarian view

- a "better" system means only "better adapted to the users who wish to pay for it" – no absolute metrics
- task-based metrics do work, and could be automated
- but could this really be the whole story?
- Cognitive view
 - why did the quest for MT evaluation metrics become just another NLP problem?
 - o with machine learning techniques, annotated data, etc.
 - the invariants of translation aren't well understood
 - good candidates for ground truth
 - o components of meaning: logical form, inferences